Filters
Question type

Study Flashcards

Describe the transformations and give the equation for the graph. - Describe the transformations and give the equation for the graph. -   A)  It is the graph of  \mathrm { f } ( \mathrm { x } )  = \sqrt { \mathrm { x } }  translated 4 units to the right, stretched vertically by a factor of 3 and translated 2 units up. The equation is  y = 3 \sqrt { x - 4 } + 2  B)  It is the graph of  f ( x )  = \sqrt { x }  translated 4 units to the right, shrunken vertically by a factor of  \frac { 1 } { 3 }  and translated 2 units up. The equation is  y = \frac { 1 } { 3 } \sqrt { x + 4 } + 2  C)  It is the graph of  f ( x )  = \sqrt { x }  translated 4 units to the right, shrunken vertically by a factor of  \frac { 1 } { 3 }  and translated 2 units up. The equation is  y = \frac { 1 } { 3 } \sqrt { x - 4 } + 2  D)  It is the graph of  f ( x )  = \sqrt { x }  translated 4 units to the right, stretched vertically by a factor of 3 and translated 2 units up. The equation is  y = 3 \sqrt { x + 4 } + 2


A) It is the graph of f(x) =x\mathrm { f } ( \mathrm { x } ) = \sqrt { \mathrm { x } } translated 4 units to the right, stretched vertically by a factor of 3 and translated 2 units up. The equation is y=3x4+2y = 3 \sqrt { x - 4 } + 2
B) It is the graph of f(x) =xf ( x ) = \sqrt { x } translated 4 units to the right, shrunken vertically by a factor of 13\frac { 1 } { 3 } and translated 2 units up. The equation is y=13x+4+2y = \frac { 1 } { 3 } \sqrt { x + 4 } + 2
C) It is the graph of f(x) =xf ( x ) = \sqrt { x } translated 4 units to the right, shrunken vertically by a factor of 13\frac { 1 } { 3 } and translated 2 units up. The equation is y=13x4+2y = \frac { 1 } { 3 } \sqrt { x - 4 } + 2
D) It is the graph of f(x) =xf ( x ) = \sqrt { x } translated 4 units to the right, stretched vertically by a factor of 3 and translated 2 units up. The equation is y=3x+4+2y = 3 \sqrt { x + 4 } + 2

E) A) and B)
F) C) and D)

Correct Answer

verifed

verified

Graph the point symmetric to the given point. -  Plot the point (0,7) , then plot the point that is symmetric to (0,7)  with respect to the y-axis. \text { Plot the point } ( 0 , - 7 ) \text {, then plot the point that is symmetric to } ( 0 , - 7 ) \text { with respect to the } y \text {-axis. }  Graph the point symmetric to the given point. - \text { Plot the point } ( 0 , - 7 )  \text {, then plot the point that is symmetric to } ( 0 , - 7 )  \text { with respect to the } y \text {-axis. }      A)      B)     C)     D)


A)
 Graph the point symmetric to the given point. - \text { Plot the point } ( 0 , - 7 )  \text {, then plot the point that is symmetric to } ( 0 , - 7 )  \text { with respect to the } y \text {-axis. }      A)      B)     C)     D)

B)
 Graph the point symmetric to the given point. - \text { Plot the point } ( 0 , - 7 )  \text {, then plot the point that is symmetric to } ( 0 , - 7 )  \text { with respect to the } y \text {-axis. }      A)      B)     C)     D)

C)
 Graph the point symmetric to the given point. - \text { Plot the point } ( 0 , - 7 )  \text {, then plot the point that is symmetric to } ( 0 , - 7 )  \text { with respect to the } y \text {-axis. }      A)      B)     C)     D)

D)
 Graph the point symmetric to the given point. - \text { Plot the point } ( 0 , - 7 )  \text {, then plot the point that is symmetric to } ( 0 , - 7 )  \text { with respect to the } y \text {-axis. }      A)      B)     C)     D)



E) A) and B)
F) B) and C)

Correct Answer

verifed

verified

Graph the function. - f(x) =4xf(x) =|4 x|  Graph the function. - f(x) =|4 x|     A)     B)    C)     D)


A)
 Graph the function. - f(x) =|4 x|     A)     B)    C)     D)

B)
 Graph the function. - f(x) =|4 x|     A)     B)    C)     D)
C)
 Graph the function. - f(x) =|4 x|     A)     B)    C)     D)

D)
 Graph the function. - f(x) =|4 x|     A)     B)    C)     D)

E) C) and D)
F) B) and D)

Correct Answer

verifed

verified

Give the domain and range of the relation. - x=y2x = y ^ { 2 }


A) domain: (,) ( \infty , \infty ) ; range: (,) ( - \infty , \infty )
B) domain: [0,) [ 0 , \infty ) ; range: [0,) [ 0 , \infty )
C) domain: (,) ( \infty , \infty ) ; range: [0,) [ 0 , \infty )
D) domain: [0,) [ 0 , \infty ) ; range: (,) ( - \infty , \infty )

E) A) and B)
F) None of the above

Correct Answer

verifed

verified

The graph of a linear function f is shown. Identify the slope, y-intercept, and x-intercept. - The graph of a linear function f is shown. Identify the slope, y-intercept, and x-intercept. -   A)   \frac { 1 } { 4 } ; ( 0 , - 8 )  , ( 2,0 )   B)   4 ; ( 0 , - 8 )  , ( 2,0 )   C)   \frac { 1 } { 4 } ; ( 0,2 )  , ( - 8,0 )   D)   4 ; ( 0,2 )  , ( - 8,0 )


A) 14;(0,8) ,(2,0) \frac { 1 } { 4 } ; ( 0 , - 8 ) , ( 2,0 )
B) 4;(0,8) ,(2,0) 4 ; ( 0 , - 8 ) , ( 2,0 )
C) 14;(0,2) ,(8,0) \frac { 1 } { 4 } ; ( 0,2 ) , ( - 8,0 )
D) 4;(0,2) ,(8,0) 4 ; ( 0,2 ) , ( - 8,0 )

E) None of the above
F) A) and D)

Correct Answer

verifed

verified

Describe how the graph of the equation relates to the graph of y y=x3y = \sqrt [ 3 ] { x } - Describe how the graph of the equation relates to the graph of y  y = \sqrt [ 3 ] { x }  -  A)   y = ( x - 3 )  ^ { 2 }  B)   y = x ^ { 2 } - 3  C)   y = x ^ { 2 } + 3  D)   y = ( x + 3 )  ^ { 2 }


A) y=(x3) 2y = ( x - 3 ) ^ { 2 }
B) y=x23y = x ^ { 2 } - 3
C) y=x2+3y = x ^ { 2 } + 3
D) y=(x+3) 2y = ( x + 3 ) ^ { 2 }

E) B) and C)
F) None of the above

Correct Answer

verifed

verified

Provide an appropriate response. -If the point (a, b) is in the fourth quadrant, in what quadrant is (a, -b) ?


A) I
B) III
C) IV
D) II

E) B) and C)
F) A) and D)

Correct Answer

verifed

verified

Find the slope of the line satisfying the given conditions. -through (3, -8) and (3, 6)


A) 14
B) undefined
C) -14
D) 0

E) B) and D)
F) A) and C)

Correct Answer

verifed

verified

Decide whether the relation defines a function. -Decide whether the relation defines a function. -  A)  Function B)  Not a function


A) Function
B) Not a function

C) A) and B)
D) undefined

Correct Answer

verifed

verified

Graph the function. - f(x) =x]1f(x) =\llbracket x]-1  Graph the function. - f(x) =\llbracket x]-1    A)     B)     C)     D)


A)
 Graph the function. - f(x) =\llbracket x]-1    A)     B)     C)     D)

B)
 Graph the function. - f(x) =\llbracket x]-1    A)     B)     C)     D)

C)
 Graph the function. - f(x) =\llbracket x]-1    A)     B)     C)     D)

D)
 Graph the function. - f(x) =\llbracket x]-1    A)     B)     C)     D)

E) A) and C)
F) B) and C)

Correct Answer

verifed

verified

Graph the linear function and give the domain and the range. If the function is a constant function, identify it as such. - g(x) =x+2g ( x ) = x + 2  Graph the linear function and give the domain and the range. If the function is a constant function, identify it as such. - g ( x )  = x + 2     A)   D = ( - \infty , \infty )  , R = ( - \infty , \infty )      B)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )      C)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )      D)   D = ( - \infty , \infty )  , R = ( - \infty , \infty )


A) D=(,) ,R=(,) D = ( - \infty , \infty ) , R = ( - \infty , \infty )
 Graph the linear function and give the domain and the range. If the function is a constant function, identify it as such. - g ( x )  = x + 2     A)   D = ( - \infty , \infty )  , R = ( - \infty , \infty )      B)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )      C)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )      D)   D = ( - \infty , \infty )  , R = ( - \infty , \infty )

B) D=(,) ,R=(,) \mathrm { D } = ( - \infty , \infty ) , \mathrm { R } = ( - \infty , \infty )
 Graph the linear function and give the domain and the range. If the function is a constant function, identify it as such. - g ( x )  = x + 2     A)   D = ( - \infty , \infty )  , R = ( - \infty , \infty )      B)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )      C)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )      D)   D = ( - \infty , \infty )  , R = ( - \infty , \infty )
C) D=(,) ,R=(,) \mathrm { D } = ( - \infty , \infty ) , \mathrm { R } = ( - \infty , \infty )
 Graph the linear function and give the domain and the range. If the function is a constant function, identify it as such. - g ( x )  = x + 2     A)   D = ( - \infty , \infty )  , R = ( - \infty , \infty )      B)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )      C)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )      D)   D = ( - \infty , \infty )  , R = ( - \infty , \infty )

D) D=(,) ,R=(,) D = ( - \infty , \infty ) , R = ( - \infty , \infty )
 Graph the linear function and give the domain and the range. If the function is a constant function, identify it as such. - g ( x )  = x + 2     A)   D = ( - \infty , \infty )  , R = ( - \infty , \infty )      B)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )      C)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )      D)   D = ( - \infty , \infty )  , R = ( - \infty , \infty )

E) B) and C)
F) A) and D)

Correct Answer

verifed

verified

The graph of a linear function f is shown. Write the equation that defines f. Write the equation in slope-intercept form. - The graph of a linear function f is shown. Write the equation that defines f. Write the equation in slope-intercept form. -  A)   y = \frac { 1 } { 6 } x + 6  B)   y = \frac { 1 } { 6 } x - 6  C)   y = 6 x - 6  D)   y = 6 x + 6


A) y=16x+6y = \frac { 1 } { 6 } x + 6
B) y=16x6y = \frac { 1 } { 6 } x - 6
C) y=6x6y = 6 x - 6
D) y=6x+6y = 6 x + 6

E) A) and C)
F) A) and B)

Correct Answer

verifed

verified

Graph the function. - y=(x+3) 3y=(x+3) ^{3}  Graph the function. - y=(x+3) ^{3}     A)     B)    C)     D)


A)
 Graph the function. - y=(x+3) ^{3}     A)     B)    C)     D)

B)
 Graph the function. - y=(x+3) ^{3}     A)     B)    C)     D)
C)
 Graph the function. - y=(x+3) ^{3}     A)     B)    C)     D)

D)
 Graph the function. - y=(x+3) ^{3}     A)     B)    C)     D)

E) A) and B)
F) B) and C)

Correct Answer

verifed

verified

Graph the function. - f(x) =12x3f ( x ) = \frac { 1 } { 2 } x ^ { 3 }  Graph the function. - f ( x )  = \frac { 1 } { 2 } x ^ { 3 }     A)     B)    C)     D)


A)
 Graph the function. - f ( x )  = \frac { 1 } { 2 } x ^ { 3 }     A)     B)    C)     D)

B)
 Graph the function. - f ( x )  = \frac { 1 } { 2 } x ^ { 3 }     A)     B)    C)     D)
C)
 Graph the function. - f ( x )  = \frac { 1 } { 2 } x ^ { 3 }     A)     B)    C)     D)

D)
 Graph the function. - f ( x )  = \frac { 1 } { 2 } x ^ { 3 }     A)     B)    C)     D)

E) B) and C)
F) A) and D)

Correct Answer

verifed

verified

Find the slope of the line and sketch the graph. - y=5xy=5 x  Find the slope of the line and sketch the graph. - y=5 x      A)   m = 5     B)   m = \frac { 1 } { 5 }    C)   m = - 5     D)   m = 0


A) m=5m = 5
 Find the slope of the line and sketch the graph. - y=5 x      A)   m = 5     B)   m = \frac { 1 } { 5 }    C)   m = - 5     D)   m = 0

B) m=15m = \frac { 1 } { 5 }
11ed7969_2718_1517_9733_714f2487f5af_TB7514_11
C) m=5m = - 5
11ed7969_3107_6ad9_9733_95c2c9021dc0_TB7514_11

D) m=0m = 0
11ed7969_3632_f6fa_9733_7b5103f60b8e_TB7514_11

E) All of the above
F) B) and D)

Correct Answer

verifed

verified

Graph the function. - y=3x21y=3 x^{2}-1  Graph the function. - y=3 x^{2}-1     A)     B)    C)     D)


A)
 Graph the function. - y=3 x^{2}-1     A)     B)    C)     D)

B)
 Graph the function. - y=3 x^{2}-1     A)     B)    C)     D)
C)
 Graph the function. - y=3 x^{2}-1     A)     B)    C)     D)

D)
 Graph the function. - y=3 x^{2}-1     A)     B)    C)     D)

E) A) and D)
F) A) and B)

Correct Answer

verifed

verified

Determine whether the equation has a graph that is symmetric with respect to the y-axis, the x-axis, the origin, or none of these. - y=0.11x4+x2+6y = 0.11 x ^ { 4 } + x ^ { 2 } + 6


A) origin only
B) none of these
C) yy -axis only
D) x-axis only

E) C) and D)
F) A) and B)

Correct Answer

verifed

verified

Find the slope and the y-intercept of the line. - y4x+3=0y - 4 x + 3 = 0


A) slope: 3;y3 ; y -intercept: (0,4) ( 0 , - 4 )
B) slope: 4 ; y-intercept: (0,3) ( 0,3 )
C) slope: 3;y- 3 ; y -intercept: (0,4) ( 0,4 )
D) slope: 4;y4 ; y -intercept (0,3) ( 0 , - 3 )

E) A) and B)
F) All of the above

Correct Answer

verifed

verified

Give the domain and range of the relation. - Give the domain and range of the relation. -   A)  domain:  ( - \infty , - 2 )  \cup ( - 2 , \infty )  ; range:  ( - \infty , 0 )  \cup ( 0 , \infty )   B)  domain:  ( - \infty , \infty )  ; range:  ( - \infty , \infty )   C)  domain:  ( - \infty , 0 ] \cup [ 0 , \infty )  ; range:  ( - \infty , - 2 ] \cup [ - 2 , \infty )   D)  domain:  ( - \infty , 0 )  \cup ( 0 , \infty )  ; range:  ( - \infty , - 2 )  \cup ( - 2 , \infty )


A) domain: (,2) (2,) ( - \infty , - 2 ) \cup ( - 2 , \infty ) ; range: (,0) (0,) ( - \infty , 0 ) \cup ( 0 , \infty )
B) domain: (,) ( - \infty , \infty ) ; range: (,) ( - \infty , \infty )
C) domain: (,0][0,) ( - \infty , 0 ] \cup [ 0 , \infty ) ; range: (,2][2,) ( - \infty , - 2 ] \cup [ - 2 , \infty )
D) domain: (,0) (0,) ( - \infty , 0 ) \cup ( 0 , \infty ) ; range: (,2) (2,) ( - \infty , - 2 ) \cup ( - 2 , \infty )

E) A) and B)
F) A) and C)

Correct Answer

verifed

verified

The graph of y = f(x) is given. Use the graph to find the function value. -The graph of y = f(x)  is given. Use the graph to find the function value. -  Find f(-3) . A)  -3 B)  2 C)  -5 D)  None of these Find f(-3) .


A) -3
B) 2
C) -5
D) None of these

E) C) and D)
F) All of the above

Correct Answer

verifed

verified

Showing 121 - 140 of 522

Related Exams

Show Answer