Filters
Question type

Study Flashcards

 Write the negation of the conditional. Use the fact that the negation of pq is pq\text { Write the negation of the conditional. Use the fact that the negation of } p \rightarrow q \text { is } p \wedge \sim q \text {. } -If 7x+2y>67 x + 2 y > 6 , the answer is "Sea."


A) 7x+2y>67 x + 2 y > - 6 so the answer is not "Sea."
B) 7x+2y67 x + 2 y \leq 6 and the answer is not "Sea."
C) If 7x+2y>67 x + 2 y > 6 , the answer is not "Sea."
D) 7x+2y>67 x + 2 y > 6 and the answer is not "Sea."

E) C) and D)
F) None of the above

Correct Answer

verifed

verified

 Let p represent 7<8q represent 2<5<6, and r represent 3<2. Decide whether the statement is true or false. \text { Let } p \text { represent } 7 < 8 \text {, } q \text { represent } 2 < 5 < 6 \text {, and } \mathbf { r } \text { represent } 3 < 2 \text {. Decide whether the statement is true or false. } - (pq)\sim ( p \wedge q )

A) True
B) False

Correct Answer

verifed

verified

Determine if the argument is valid or a fallacy. Give a reason to justify answer. -If it is cold, then you need a coat. You do not need a coat\underline { \text {You do not need a coat} } It is not cold.


A) Valid by reasoning of transitivity
B) Valid by modus tollens
C) Fallacy by fallacy of the converse
D) Fallacy by fallacy of the inverse

E) B) and D)
F) A) and D)

Correct Answer

verifed

verified

Construct a truth table for the statement. - (rs) (rs) (\mathrm{r} \rightarrow \sim \mathrm{s}) \rightarrow(\mathrm{r} \wedge \sim \mathrm{s})


A)
rS(rs) (rSTTFTFTFTTFFT\begin{array}{ccc}\mathrm{r} & \mathrm{S} & (\mathrm{r} \rightarrow \sim \mathrm{s}) \rightarrow(\mathrm{r} \wedge \sim \mathrm{S} \\\hline \mathrm{T} & \mathrm{T} & \mathrm{F} \\\mathrm{T} & \mathrm{F} & \mathrm{T} \\\mathrm{F} & \mathrm{T} & \mathrm{T} \\\mathrm{F} & \mathrm{F} & \mathrm{T}\end{array}

B)
rs(rs) (rs) TTTTFTFTFFFT\begin{array}{lll}\mathrm{r} & \mathrm{s} & (\mathrm{r} \rightarrow \sim \mathrm{s}) \rightarrow(\mathrm{r} \wedge \sim \mathrm{s}) \\\hline \mathrm{T} & \mathrm{T} & \mathrm{T} \\\mathrm{T} & \mathrm{F} & \mathrm{T} \\\mathrm{F} & \mathrm{T} & \mathrm{F} \\\mathrm{F} & \mathrm{F} & \mathrm{T}\end{array}

C)
rS(rs) (rS) TTTTFTFTFFFF\begin{array}{lll}\mathrm{r} & \mathrm{S} & (\mathrm{r} \rightarrow \sim \mathrm{s}) \rightarrow(\mathrm{r} \wedge \sim \mathrm{S}) \\\hline \mathrm{T} & \mathrm{T} & \mathrm{T} \\\mathrm{T} & \mathrm{F} & \mathrm{T} \\\mathrm{F} & \mathrm{T} & \mathrm{F} \\\mathrm{F} & \mathrm{F} & \mathrm{F}\end{array}

D)
rs(rs) (rs) TTFTFFFFFFTT\begin{array}{lll}\mathrm{r} & \mathrm{s} & (\mathrm{r} \rightarrow \sim \mathrm{s}) \rightarrow(\mathrm{r} \wedge \sim \mathrm{s}) \\\hline \mathrm{T} & \mathrm{T} & \mathrm{F} \\\mathrm{T} & \mathrm{F} & \mathrm{F} \\\mathrm{F} & \mathrm{F} & \mathrm{F} \\\mathrm{F} & \mathrm{T} & \mathrm{T}\end{array}

E) A) and B)
F) B) and C)

Correct Answer

verifed

verified

Determine whether the argument is valid or invalid. -If you are infected with the measles, then it can be transmitted. The results are grave and it cannot be transmitted. Therefore, if the results are not grave, then you are infected with the measles


A) Valid
B) Invalid

C) A) and B)
D) undefined

Correct Answer

verifed

verified

Solve the Sudoku. -Hard 867598389523961549832677963\begin{array} { | l | l | l | l | l | l | l | l | l | } \hline & 8 & & & & 6 & 7 & & 5 \\\hline & & & & 9 & & & 8 & \\\hline 3 & & & & 8 & & & & \\\hline 9 & & 5 & & & & 2 & & \\\hline & 3 & & 9 & 6 & 1 & & 5 & \\\hline & & 4 & & & & 9 & & 8 \\\hline & & & & 3 & & & & 2 \\\hline & 6 & & & 7 & & & & \\\hline 7 & & 9 & 6 & & & & 3 & \\\hline\end{array}

Correct Answer

verifed

verified

\[\begin{array} { | l | l | l | l | l | ...

View Answer

Tell whether the conditional statement is true or false. -Here F represents a false statement. F(5=8)\mathrm { F } \rightarrow ( 5 = 8 )

A) True
B) False

Correct Answer

verifed

verified

Find the truth value of the statement. - 75=2 if and only if 11+2=147 - 5 = 2 \text { if and only if } 11 + 2 = 14

A) True
B) False

Correct Answer

verifed

verified

Tell whether the conditional statement is true or false. - (8=124)(5>0)( 8 = 12 - 4 ) \rightarrow ( 5 > 0 )

A) True
B) False

Correct Answer

verifed

verified

Write a negation of the inequality. Do not use a slash symbol. - x50x \geq - 50


A) x50x \geq 50
B) x<50x < 50
C) x<50x < - 50
D) x50x \leq - 50

E) None of the above
F) A) and C)

Correct Answer

verifed

verified

Write a logical statement representing the following circuit. Simplify when possible. - p[(qr)p]\sim p \rightarrow [ ( q \wedge r ) \vee \sim p ]

Correct Answer

verifed

verified

The statem...

View Answer

 If p is false then the statement q(pq) must be true. \text { If } p \text { is false then the statement } q \rightarrow ( \sim p \vee q ) \text { must be true. }

A) True
B) False

Correct Answer

verifed

verified

Use the method of writing each premise in symbols in order to write a conclusion that yields a valid argument. -Every man with a mind can think. A distracted man can't think. A man who is not distracted can apply himself.


A) Every man with a mind is distracted.
B) Every distracted man can apply himself.
C) Every man with a mind can apply himself.
D) Every man who can apply himself has a mind.

E) A) and C)
F) None of the above

Correct Answer

verifed

verified

Tell whether the conditional statement is true or false. -Here F represents a false statement. (2=2)F( 2 = 2 ) \rightarrow F

A) True
B) False

Correct Answer

verifed

verified

Decide whether the compound statement is true or false. The symbol for exclusive disjunction \vee represents "one or the other is true, but not both". - 8+4=203+5=138 + 4 = 20 \underline\vee 3 + 5 = 13

A) True
B) False

Correct Answer

verifed

verified

Decide whether the statement is compound. -I'll go to Mexico or Costa Rica for my next vacation.


A) Compound
B) Not compound

C) A) and B)
D) undefined

Correct Answer

verifed

verified

Solve the logic puzzle by using a grid. -The scores of a math test for five students were posted on the bulletin board. The students' names are Tom, Penny, Jim, John and Fred. Tom and Fred scored the same number of points. Penny did Not get the highest score. John's score was 5 points lower than Jim's. The scores were 69, 52, 94, 52 And 89. Which student received what score?


A) Tom and Fred 52, Penny 69, Jim 94, John 89
B) Tom and Fred 52, Penny 89, Jim 69, John 94
C) Tom and Jim 52, Penny 89, Fred 69, John 94
D) Tom and Jim 52, John 69, Jim 89, Penny 94

E) B) and C)
F) None of the above

Correct Answer

verifed

verified

Determine if the argument is valid or a fallacy. Give a reason to justify answer. -If it's Tuesday, then this must be Paris. Today is Wednesday.\underline { \text {Today is Wednesday.} } This cannot be Paris.


A) Fallacy by fallacy of the inverse
B) Fallacy by fallacy of the converse
C) Valid by reasoning of transitivity
D) Valid by modus tollens

E) A) and D)
F) None of the above

Correct Answer

verifed

verified

Let p represent a true statement, while q and r represent false statements. Find the truth value of the compound statement. - p( qr)\sim \mathrm { p} \vee ( \mathrm {~q} \wedge \sim \mathrm { r } )

A) True
B) False

Correct Answer

verifed

verified

 Let p represent 7<8q represent 2<5<6, and r represent 3<2. Decide whether the statement is true or false. \text { Let } p \text { represent } 7 < 8 \text {, } q \text { represent } 2 < 5 < 6 \text {, and } \mathbf { r } \text { represent } 3 < 2 \text {. Decide whether the statement is true or false. } - qr\sim q \wedge \sim r

A) True
B) False

Correct Answer

verifed

verified

Showing 81 - 100 of 315

Related Exams

Show Answer