Filters
Question type

In cylindrical coordinates, find In cylindrical coordinates, find  f for f =   sin( \theta )  +   . A)  2r sin( \theta )    + r cos( \theta )    + 2z k B)  2r sin( \theta )    +   cos( \theta )    + 2z k C)  2r cos( \theta )    + r sin( \theta )    + 2z k D)  2r cos( \theta )    +   sin( \theta )    + 2z k E)  r sin( \theta )    +   cos( \theta )    + 2z k f for f =  In cylindrical coordinates, find  f for f =   sin( \theta )  +   . A)  2r sin( \theta )    + r cos( \theta )    + 2z k B)  2r sin( \theta )    +   cos( \theta )    + 2z k C)  2r cos( \theta )    + r sin( \theta )    + 2z k D)  2r cos( \theta )    +   sin( \theta )    + 2z k E)  r sin( \theta )    +   cos( \theta )    + 2z k sin( θ\theta ) +  In cylindrical coordinates, find  f for f =   sin( \theta )  +   . A)  2r sin( \theta )    + r cos( \theta )    + 2z k B)  2r sin( \theta )    +   cos( \theta )    + 2z k C)  2r cos( \theta )    + r sin( \theta )    + 2z k D)  2r cos( \theta )    +   sin( \theta )    + 2z k E)  r sin( \theta )    +   cos( \theta )    + 2z k .


A) 2r sin( θ\theta )  In cylindrical coordinates, find  f for f =   sin( \theta )  +   . A)  2r sin( \theta )    + r cos( \theta )    + 2z k B)  2r sin( \theta )    +   cos( \theta )    + 2z k C)  2r cos( \theta )    + r sin( \theta )    + 2z k D)  2r cos( \theta )    +   sin( \theta )    + 2z k E)  r sin( \theta )    +   cos( \theta )    + 2z k + r cos( θ\theta )  In cylindrical coordinates, find  f for f =   sin( \theta )  +   . A)  2r sin( \theta )    + r cos( \theta )    + 2z k B)  2r sin( \theta )    +   cos( \theta )    + 2z k C)  2r cos( \theta )    + r sin( \theta )    + 2z k D)  2r cos( \theta )    +   sin( \theta )    + 2z k E)  r sin( \theta )    +   cos( \theta )    + 2z k + 2z k
B) 2r sin( θ\theta )  In cylindrical coordinates, find  f for f =   sin( \theta )  +   . A)  2r sin( \theta )    + r cos( \theta )    + 2z k B)  2r sin( \theta )    +   cos( \theta )    + 2z k C)  2r cos( \theta )    + r sin( \theta )    + 2z k D)  2r cos( \theta )    +   sin( \theta )    + 2z k E)  r sin( \theta )    +   cos( \theta )    + 2z k +  In cylindrical coordinates, find  f for f =   sin( \theta )  +   . A)  2r sin( \theta )    + r cos( \theta )    + 2z k B)  2r sin( \theta )    +   cos( \theta )    + 2z k C)  2r cos( \theta )    + r sin( \theta )    + 2z k D)  2r cos( \theta )    +   sin( \theta )    + 2z k E)  r sin( \theta )    +   cos( \theta )    + 2z k cos( θ\theta )  In cylindrical coordinates, find  f for f =   sin( \theta )  +   . A)  2r sin( \theta )    + r cos( \theta )    + 2z k B)  2r sin( \theta )    +   cos( \theta )    + 2z k C)  2r cos( \theta )    + r sin( \theta )    + 2z k D)  2r cos( \theta )    +   sin( \theta )    + 2z k E)  r sin( \theta )    +   cos( \theta )    + 2z k + 2z k
C) 2r cos( θ\theta )  In cylindrical coordinates, find  f for f =   sin( \theta )  +   . A)  2r sin( \theta )    + r cos( \theta )    + 2z k B)  2r sin( \theta )    +   cos( \theta )    + 2z k C)  2r cos( \theta )    + r sin( \theta )    + 2z k D)  2r cos( \theta )    +   sin( \theta )    + 2z k E)  r sin( \theta )    +   cos( \theta )    + 2z k + r sin( θ\theta )  In cylindrical coordinates, find  f for f =   sin( \theta )  +   . A)  2r sin( \theta )    + r cos( \theta )    + 2z k B)  2r sin( \theta )    +   cos( \theta )    + 2z k C)  2r cos( \theta )    + r sin( \theta )    + 2z k D)  2r cos( \theta )    +   sin( \theta )    + 2z k E)  r sin( \theta )    +   cos( \theta )    + 2z k + 2z k
D) 2r cos( θ\theta )  In cylindrical coordinates, find  f for f =   sin( \theta )  +   . A)  2r sin( \theta )    + r cos( \theta )    + 2z k B)  2r sin( \theta )    +   cos( \theta )    + 2z k C)  2r cos( \theta )    + r sin( \theta )    + 2z k D)  2r cos( \theta )    +   sin( \theta )    + 2z k E)  r sin( \theta )    +   cos( \theta )    + 2z k +  In cylindrical coordinates, find  f for f =   sin( \theta )  +   . A)  2r sin( \theta )    + r cos( \theta )    + 2z k B)  2r sin( \theta )    +   cos( \theta )    + 2z k C)  2r cos( \theta )    + r sin( \theta )    + 2z k D)  2r cos( \theta )    +   sin( \theta )    + 2z k E)  r sin( \theta )    +   cos( \theta )    + 2z k sin( θ\theta )  In cylindrical coordinates, find  f for f =   sin( \theta )  +   . A)  2r sin( \theta )    + r cos( \theta )    + 2z k B)  2r sin( \theta )    +   cos( \theta )    + 2z k C)  2r cos( \theta )    + r sin( \theta )    + 2z k D)  2r cos( \theta )    +   sin( \theta )    + 2z k E)  r sin( \theta )    +   cos( \theta )    + 2z k + 2z k
E) r sin( θ\theta )  In cylindrical coordinates, find  f for f =   sin( \theta )  +   . A)  2r sin( \theta )    + r cos( \theta )    + 2z k B)  2r sin( \theta )    +   cos( \theta )    + 2z k C)  2r cos( \theta )    + r sin( \theta )    + 2z k D)  2r cos( \theta )    +   sin( \theta )    + 2z k E)  r sin( \theta )    +   cos( \theta )    + 2z k +  In cylindrical coordinates, find  f for f =   sin( \theta )  +   . A)  2r sin( \theta )    + r cos( \theta )    + 2z k B)  2r sin( \theta )    +   cos( \theta )    + 2z k C)  2r cos( \theta )    + r sin( \theta )    + 2z k D)  2r cos( \theta )    +   sin( \theta )    + 2z k E)  r sin( \theta )    +   cos( \theta )    + 2z k cos( θ\theta )  In cylindrical coordinates, find  f for f =   sin( \theta )  +   . A)  2r sin( \theta )    + r cos( \theta )    + 2z k B)  2r sin( \theta )    +   cos( \theta )    + 2z k C)  2r cos( \theta )    + r sin( \theta )    + 2z k D)  2r cos( \theta )    +   sin( \theta )    + 2z k E)  r sin( \theta )    +   cos( \theta )    + 2z k + 2z k

F) C) and E)
G) A) and B)

Correct Answer

verifed

verified

In spherical coordinates, find  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )    f for f =  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )    sin( θ\theta ) cos( θ\theta ) .


A) 3  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )    sin( θ\theta ) cos( θ\theta )  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )    +  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )    cos( θ\theta ) cos( θ\theta )  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )    -  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )    sin( θ\theta )  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )
B) 3  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )    sin( θ\theta ) cos( θ\theta )  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )    +  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )    cos( θ\theta ) cos( θ\theta )  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )    -  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )    sin( θ\theta ) sin( θ\theta )  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )
C)  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )
D) 3  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )    sin( θ\theta ) cos( θ\theta )  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )    -  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )    cos( θ\theta ) cos( θ\theta )  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )    +  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )    sin( θ\theta )  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )
E) 3  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )    sin( θ\theta ) cos( θ\theta )  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )    -  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )    cos( θ\theta ) cos( θ\theta )  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )    -  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )    sin( θ\theta )  In spherical coordinates, find   f for f =   sin( \theta )  cos( \theta ) . A)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )    B)  3   sin( \theta )  cos( \theta )    +   cos( \theta )  cos( \theta )    -   sin( \theta )  sin( \theta )    C)    D)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    +   sin( \theta )    E)  3   sin( \theta )  cos( \theta )    -   cos( \theta )  cos( \theta )    -   sin( \theta )

F) None of the above
G) A) and C)

Correct Answer

verifed

verified

In cylindrical coordinates, find  In cylindrical coordinates, find   . F for F =     + rz cos( \theta )    + rz sin( \theta )  k. A)  4   - z sin( \theta )  + sin( \theta )  B)  4   - z sin( \theta )  + r sin( \theta )  C)  3   - sin( \theta )  + r sin( \theta )  D)  3   - z sin( \theta )  - r sin( \theta )  E)  3   - z sin( \theta )  + sin( \theta )  . F for F =  In cylindrical coordinates, find   . F for F =     + rz cos( \theta )    + rz sin( \theta )  k. A)  4   - z sin( \theta )  + sin( \theta )  B)  4   - z sin( \theta )  + r sin( \theta )  C)  3   - sin( \theta )  + r sin( \theta )  D)  3   - z sin( \theta )  - r sin( \theta )  E)  3   - z sin( \theta )  + sin( \theta )   In cylindrical coordinates, find   . F for F =     + rz cos( \theta )    + rz sin( \theta )  k. A)  4   - z sin( \theta )  + sin( \theta )  B)  4   - z sin( \theta )  + r sin( \theta )  C)  3   - sin( \theta )  + r sin( \theta )  D)  3   - z sin( \theta )  - r sin( \theta )  E)  3   - z sin( \theta )  + sin( \theta )  + rz cos( θ\theta )  In cylindrical coordinates, find   . F for F =     + rz cos( \theta )    + rz sin( \theta )  k. A)  4   - z sin( \theta )  + sin( \theta )  B)  4   - z sin( \theta )  + r sin( \theta )  C)  3   - sin( \theta )  + r sin( \theta )  D)  3   - z sin( \theta )  - r sin( \theta )  E)  3   - z sin( \theta )  + sin( \theta )  + rz sin( θ\theta ) k.


A) 4  In cylindrical coordinates, find   . F for F =     + rz cos( \theta )    + rz sin( \theta )  k. A)  4   - z sin( \theta )  + sin( \theta )  B)  4   - z sin( \theta )  + r sin( \theta )  C)  3   - sin( \theta )  + r sin( \theta )  D)  3   - z sin( \theta )  - r sin( \theta )  E)  3   - z sin( \theta )  + sin( \theta )  - z sin( θ\theta ) + sin( θ\theta )
B) 4  In cylindrical coordinates, find   . F for F =     + rz cos( \theta )    + rz sin( \theta )  k. A)  4   - z sin( \theta )  + sin( \theta )  B)  4   - z sin( \theta )  + r sin( \theta )  C)  3   - sin( \theta )  + r sin( \theta )  D)  3   - z sin( \theta )  - r sin( \theta )  E)  3   - z sin( \theta )  + sin( \theta )  - z sin( θ\theta ) + r sin( θ\theta )
C) 3  In cylindrical coordinates, find   . F for F =     + rz cos( \theta )    + rz sin( \theta )  k. A)  4   - z sin( \theta )  + sin( \theta )  B)  4   - z sin( \theta )  + r sin( \theta )  C)  3   - sin( \theta )  + r sin( \theta )  D)  3   - z sin( \theta )  - r sin( \theta )  E)  3   - z sin( \theta )  + sin( \theta )  - sin( θ\theta ) + r sin( θ\theta )
D) 3  In cylindrical coordinates, find   . F for F =     + rz cos( \theta )    + rz sin( \theta )  k. A)  4   - z sin( \theta )  + sin( \theta )  B)  4   - z sin( \theta )  + r sin( \theta )  C)  3   - sin( \theta )  + r sin( \theta )  D)  3   - z sin( \theta )  - r sin( \theta )  E)  3   - z sin( \theta )  + sin( \theta )  - z sin( θ\theta ) - r sin( θ\theta )
E) 3  In cylindrical coordinates, find   . F for F =     + rz cos( \theta )    + rz sin( \theta )  k. A)  4   - z sin( \theta )  + sin( \theta )  B)  4   - z sin( \theta )  + r sin( \theta )  C)  3   - sin( \theta )  + r sin( \theta )  D)  3   - z sin( \theta )  - r sin( \theta )  E)  3   - z sin( \theta )  + sin( \theta )  - z sin( θ\theta ) + sin( θ\theta )

F) A) and C)
G) A) and D)

Correct Answer

verifed

verified

Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA) enclosed by a positively oriented, piecewise smooth, simple closed curve C .


A) Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA)  enclosed by a positively oriented, piecewise smooth, simple closed curve C . A)    B)    C)    D)    E)
B) Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA)  enclosed by a positively oriented, piecewise smooth, simple closed curve C . A)    B)    C)    D)    E)
C) Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA)  enclosed by a positively oriented, piecewise smooth, simple closed curve C . A)    B)    C)    D)    E)
D) Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA)  enclosed by a positively oriented, piecewise smooth, simple closed curve C . A)    B)    C)    D)    E)
E) Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA)  enclosed by a positively oriented, piecewise smooth, simple closed curve C . A)    B)    C)    D)    E)

F) A) and B)
G) A) and E)

Correct Answer

verifed

verified

Let F = -  Let F = -   i +   j and let C be the boundary of circle   +   = 9 oriented counterclockwise. Use Green's Theorem to evaluate   A)  9  \pi  B)  0 C)  -2  \pi  D)  2  \pi  E)  3  \pi i +  Let F = -   i +   j and let C be the boundary of circle   +   = 9 oriented counterclockwise. Use Green's Theorem to evaluate   A)  9  \pi  B)  0 C)  -2  \pi  D)  2  \pi  E)  3  \pi j and let C be the boundary of circle  Let F = -   i +   j and let C be the boundary of circle   +   = 9 oriented counterclockwise. Use Green's Theorem to evaluate   A)  9  \pi  B)  0 C)  -2  \pi  D)  2  \pi  E)  3  \pi +  Let F = -   i +   j and let C be the boundary of circle   +   = 9 oriented counterclockwise. Use Green's Theorem to evaluate   A)  9  \pi  B)  0 C)  -2  \pi  D)  2  \pi  E)  3  \pi = 9 oriented counterclockwise. Use Green's Theorem to evaluate  Let F = -   i +   j and let C be the boundary of circle   +   = 9 oriented counterclockwise. Use Green's Theorem to evaluate   A)  9  \pi  B)  0 C)  -2  \pi  D)  2  \pi  E)  3  \pi


A) 9 π\pi
B) 0
C) -2 π\pi
D) 2 π\pi
E) 3 π\pi

F) A) and C)
G) A) and D)

Correct Answer

verifed

verified

Using spherical polar coordinates, find  Using spherical polar coordinates, find   × F for F =   sin( \theta )    + sin( \theta )    +   cos( \theta )    . A)    B)    C)    D)    E)    × F for F =  Using spherical polar coordinates, find   × F for F =   sin( \theta )    + sin( \theta )    +   cos( \theta )    . A)    B)    C)    D)    E)    sin( θ\theta )  Using spherical polar coordinates, find   × F for F =   sin( \theta )    + sin( \theta )    +   cos( \theta )    . A)    B)    C)    D)    E)    + sin( θ\theta )  Using spherical polar coordinates, find   × F for F =   sin( \theta )    + sin( \theta )    +   cos( \theta )    . A)    B)    C)    D)    E)    +  Using spherical polar coordinates, find   × F for F =   sin( \theta )    + sin( \theta )    +   cos( \theta )    . A)    B)    C)    D)    E)    cos( θ\theta )  Using spherical polar coordinates, find   × F for F =   sin( \theta )    + sin( \theta )    +   cos( \theta )    . A)    B)    C)    D)    E)    .


A)  Using spherical polar coordinates, find   × F for F =   sin( \theta )    + sin( \theta )    +   cos( \theta )    . A)    B)    C)    D)    E)
B)  Using spherical polar coordinates, find   × F for F =   sin( \theta )    + sin( \theta )    +   cos( \theta )    . A)    B)    C)    D)    E)
C)  Using spherical polar coordinates, find   × F for F =   sin( \theta )    + sin( \theta )    +   cos( \theta )    . A)    B)    C)    D)    E)
D)  Using spherical polar coordinates, find   × F for F =   sin( \theta )    + sin( \theta )    +   cos( \theta )    . A)    B)    C)    D)    E)
E)  Using spherical polar coordinates, find   × F for F =   sin( \theta )    + sin( \theta )    +   cos( \theta )    . A)    B)    C)    D)    E)

F) B) and C)
G) A) and B)

Correct Answer

verifed

verified

If r = x i + y j + z k and k is a constant vector field in R3, then


A) div ( k × r) = 0
B) div ( k × r) = 0.
C) grad ( k . r) = 2k
D) curl ( k × r) = 0
E) curl ( k × r) = 0.

F) A) and B)
G) A) and E)

Correct Answer

verifed

verified

Evaluate  Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)  A)      \pi     B)    \pi    C)      \pi   D)  2  \pi    E)      \pi    where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)


A)  Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)  A)      \pi     B)    \pi    C)      \pi   D)  2  \pi    E)      \pi    π\pi  Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)  A)      \pi     B)    \pi    C)      \pi   D)  2  \pi    E)      \pi
B) π\pi  Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)  A)      \pi     B)    \pi    C)      \pi   D)  2  \pi    E)      \pi
C)  Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)  A)      \pi     B)    \pi    C)      \pi   D)  2  \pi    E)      \pi    π\pi  Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)  A)      \pi     B)    \pi    C)      \pi   D)  2  \pi    E)      \pi
D) 2 π\pi  Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)  A)      \pi     B)    \pi    C)      \pi   D)  2  \pi    E)      \pi
E)  Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)  A)      \pi     B)    \pi    C)      \pi   D)  2  \pi    E)      \pi    π\pi  Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)  A)      \pi     B)    \pi    C)      \pi   D)  2  \pi    E)      \pi

F) A) and C)
G) A) and E)

Correct Answer

verifed

verified

Use Green's Theorem to compute the integral  Use Green's Theorem to compute the integral   where C is the triangle formed by the lines y = -x + 1, x = 0 and y = 0, oriented clockwise. A)  3 B)  2 C)  1 D)  0 E)    \pi where C is the triangle formed by the lines y = -x + 1, x = 0 and y = 0, oriented clockwise.


A) 3
B) 2
C) 1
D) 0
E) π\pi

F) A) and E)
G) A) and D)

Correct Answer

verifed

verified

Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(  Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y ) cosh (c z)  i + b cos (   x + 2y) cosh (c z)  j + c sin(   x + 2y) sinh(c z)  k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  . A)  a = -   , b = -2, c = 3 B)  a =   , b = 2, c = 2 C)  a = -   , b = -2, c =   ± 2 D)  a =   , b = 2, c = ± 3 E)  a =   , b = -2, c = 9 x + 2y ) cosh (c z) i + b cos (  Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y ) cosh (c z)  i + b cos (   x + 2y) cosh (c z)  j + c sin(   x + 2y) sinh(c z)  k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  . A)  a = -   , b = -2, c = 3 B)  a =   , b = 2, c = 2 C)  a = -   , b = -2, c =   ± 2 D)  a =   , b = 2, c = ± 3 E)  a =   , b = -2, c = 9 x + 2y) cosh (c z) j + c sin(  Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y ) cosh (c z)  i + b cos (   x + 2y) cosh (c z)  j + c sin(   x + 2y) sinh(c z)  k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  . A)  a = -   , b = -2, c = 3 B)  a =   , b = 2, c = 2 C)  a = -   , b = -2, c =   ± 2 D)  a =   , b = 2, c = ± 3 E)  a =   , b = -2, c = 9 x + 2y) sinh(c z) k is both  irrotational \textbf{ irrotational } and  solenoidal \textbf{ solenoidal } .


A) a = -  Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y ) cosh (c z)  i + b cos (   x + 2y) cosh (c z)  j + c sin(   x + 2y) sinh(c z)  k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  . A)  a = -   , b = -2, c = 3 B)  a =   , b = 2, c = 2 C)  a = -   , b = -2, c =   ± 2 D)  a =   , b = 2, c = ± 3 E)  a =   , b = -2, c = 9 , b = -2, c = 3
B) a =  Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y ) cosh (c z)  i + b cos (   x + 2y) cosh (c z)  j + c sin(   x + 2y) sinh(c z)  k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  . A)  a = -   , b = -2, c = 3 B)  a =   , b = 2, c = 2 C)  a = -   , b = -2, c =   ± 2 D)  a =   , b = 2, c = ± 3 E)  a =   , b = -2, c = 9 , b = 2, c = 2
C) a = -  Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y ) cosh (c z)  i + b cos (   x + 2y) cosh (c z)  j + c sin(   x + 2y) sinh(c z)  k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  . A)  a = -   , b = -2, c = 3 B)  a =   , b = 2, c = 2 C)  a = -   , b = -2, c =   ± 2 D)  a =   , b = 2, c = ± 3 E)  a =   , b = -2, c = 9 , b = -2, c =  Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y ) cosh (c z)  i + b cos (   x + 2y) cosh (c z)  j + c sin(   x + 2y) sinh(c z)  k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  . A)  a = -   , b = -2, c = 3 B)  a =   , b = 2, c = 2 C)  a = -   , b = -2, c =   ± 2 D)  a =   , b = 2, c = ± 3 E)  a =   , b = -2, c = 9 ± 2
D) a =  Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y ) cosh (c z)  i + b cos (   x + 2y) cosh (c z)  j + c sin(   x + 2y) sinh(c z)  k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  . A)  a = -   , b = -2, c = 3 B)  a =   , b = 2, c = 2 C)  a = -   , b = -2, c =   ± 2 D)  a =   , b = 2, c = ± 3 E)  a =   , b = -2, c = 9 , b = 2, c = ± 3
E) a =  Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y ) cosh (c z)  i + b cos (   x + 2y) cosh (c z)  j + c sin(   x + 2y) sinh(c z)  k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  . A)  a = -   , b = -2, c = 3 B)  a =   , b = 2, c = 2 C)  a = -   , b = -2, c =   ± 2 D)  a =   , b = 2, c = ± 3 E)  a =   , b = -2, c = 9 , b = -2, c = 9

F) B) and D)
G) C) and D)

Correct Answer

verifed

verified

Use Stokes's Theorem to evaluate the integral  Use Stokes's Theorem to evaluate the integral    where C is the curve of intersection of the sphere       and the plane       oriented counterclockwise as seen from high on the  z-axis.  A)  2  \pi  B)  3  \pi  C)  4  \pi  D)  5  \pi  E)  0 where C is the curve of intersection of the sphere  Use Stokes's Theorem to evaluate the integral    where C is the curve of intersection of the sphere       and the plane       oriented counterclockwise as seen from high on the  z-axis.  A)  2  \pi  B)  3  \pi  C)  4  \pi  D)  5  \pi  E)  0 and the plane  Use Stokes's Theorem to evaluate the integral    where C is the curve of intersection of the sphere       and the plane       oriented counterclockwise as seen from high on the  z-axis.  A)  2  \pi  B)  3  \pi  C)  4  \pi  D)  5  \pi  E)  0 oriented counterclockwise as seen from high on the z-axis.


A) 2 π\pi
B) 3 π\pi
C) 4 π\pi
D) 5 π\pi
E) 0

F) C) and D)
G) A) and B)

Correct Answer

verifed

verified

If C is the positively oriented boundary of a plane region R having area 3 units and centroid at the point (12, 6) , evaluate (i) If C is the positively oriented boundary of a plane region R having area 3 units and centroid at the point (12, 6) , evaluate (i)    (ii)    dx + 3xy dy A)  (i)  36 (ii)  15 B)  (i)  -36 (ii)  18 C)  (i)  -18 (ii)  36 D)  (i)  -4 (ii)  2 E)  (i)  432 (ii)  1080 (ii) If C is the positively oriented boundary of a plane region R having area 3 units and centroid at the point (12, 6) , evaluate (i)    (ii)    dx + 3xy dy A)  (i)  36 (ii)  15 B)  (i)  -36 (ii)  18 C)  (i)  -18 (ii)  36 D)  (i)  -4 (ii)  2 E)  (i)  432 (ii)  1080 dx + 3xy dy


A) (i) 36 (ii) 15
B) (i) -36 (ii) 18
C) (i) -18 (ii) 36
D) (i) -4 (ii) 2
E) (i) 432 (ii) 1080

F) A) and B)
G) C) and D)

Correct Answer

verifed

verified

Use Stokes's Theorem to evaluate the line integral Use Stokes's Theorem to evaluate the line integral   where C is the triangle with vertices (0, 0, 1) , (0, 1, 1)  and (1, 0, 0)  with counterclockwise orientation as seen from high on the z-axis. A)  0 B)  1 C)  -1 D)  2 E)  -2 where C is the triangle with vertices (0, 0, 1) , (0, 1, 1) and (1, 0, 0) with counterclockwise orientation as seen from high on the z-axis.


A) 0
B) 1
C) -1
D) 2
E) -2

F) A) and B)
G) D) and E)

Correct Answer

verifed

verified

Let Let  and F be sufficiently smooth scalar and vector fields, respectively.Express the well-known identity  . (  F )  = (    )  . F +   ( . F)  using the notations grad , div or curl. A)  curl (  F)  = grad (  )  . F +     div (F)  B)  div (  F)  = curl (  )  . F +    grad (F)  C)  div (  F)  = grad (  )  . F +    div (F)  D)  grad (  F)  = div (  )  . F +    curl (F)  E)  curl (  F)  = div (  )  . F +     grad (F) and F be sufficiently smooth scalar and vector fields, respectively.Express the well-known identity Let  and F be sufficiently smooth scalar and vector fields, respectively.Express the well-known identity  . (  F )  = (    )  . F +   ( . F)  using the notations grad , div or curl. A)  curl (  F)  = grad (  )  . F +     div (F)  B)  div (  F)  = curl (  )  . F +    grad (F)  C)  div (  F)  = grad (  )  . F +    div (F)  D)  grad (  F)  = div (  )  . F +    curl (F)  E)  curl (  F)  = div (  )  . F +     grad (F) . (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F ) = (11ee7bad_7817_372f_ae82_a36163e56c30_TB9661_11 11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 ) . F + 11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 (11ee7bad_7817_372f_ae82_a36163e56c30_TB9661_11. F) using the notations grad , div or curl.


A) curl (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F) = grad (11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 ) . F + 11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 div (F)
B) div (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F) = curl (11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 ) . F + 11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 grad (F)
C) div (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F) = grad (11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 ) . F + 11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 div (F)
D) grad (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F) = div (11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 ) . F + 11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 curl (F)
E) curl (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F) = div (11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 ) . F + 11ee7bad_d4f5_2c01_ae82_0ffef783bd40_TB9661_11 grad (F)

F) A) and D)
G) A) and B)

Correct Answer

verifed

verified

Evaluate Evaluate   clockwise around the triangle with vertices (0, 0) , (3, 0) , and (3, 3) . A)  27 B)  9 C)  -9 D)  -27 E)  0 clockwise around the triangle with vertices (0, 0) , (3, 0) , and (3, 3) .


A) 27
B) 9
C) -9
D) -27
E) 0

F) D) and E)
G) B) and C)

Correct Answer

verifed

verified

Define the curl of a vector field F.


A) F × Define the curl of a vector field F. A)  F ×   B)    F C)    × F D)    . F E)    F
B) Define the curl of a vector field F. A)  F ×   B)    F C)    × F D)    . F E)    F F
C) 11ee7bab_8c78_b929_ae82_a3f0e4bb6058_TB9661_11 × F
D) 11ee7bab_8c78_b929_ae82_a3f0e4bb6058_TB9661_11 . F
E) 11ee7bab_8c78_b929_ae82_a3f0e4bb6058_TB9661_11 F

F) B) and D)
G) D) and E)

Correct Answer

verifed

verified

Find the flux of Find the flux of   i - xy j +3z k out of the solid region bounded by the parabolic cylinder   and the planes   , and   A)  208 B)  112 C)  64 D)  48 E)  176 i - xy j +3z k out of the solid region bounded by the parabolic cylinder Find the flux of   i - xy j +3z k out of the solid region bounded by the parabolic cylinder   and the planes   , and   A)  208 B)  112 C)  64 D)  48 E)  176 and the planes Find the flux of   i - xy j +3z k out of the solid region bounded by the parabolic cylinder   and the planes   , and   A)  208 B)  112 C)  64 D)  48 E)  176 , and Find the flux of   i - xy j +3z k out of the solid region bounded by the parabolic cylinder   and the planes   , and   A)  208 B)  112 C)  64 D)  48 E)  176


A) 208
B) 112
C) 64
D) 48
E) 176

F) B) and D)
G) All of the above

Correct Answer

verifed

verified

Evaluate the integral Evaluate the integral   (   )  - 2y)  dx + (3x - ysin(   ) )  dy counterclockwise around the triangle in the xy-plane having vertices (0, 0) , (2, 2) , and (2, 0) . A)  5 B)  20 C)  0 D)  10 E)  2 ( Evaluate the integral   (   )  - 2y)  dx + (3x - ysin(   ) )  dy counterclockwise around the triangle in the xy-plane having vertices (0, 0) , (2, 2) , and (2, 0) . A)  5 B)  20 C)  0 D)  10 E)  2 ) - 2y) dx + (3x - ysin( Evaluate the integral   (   )  - 2y)  dx + (3x - ysin(   ) )  dy counterclockwise around the triangle in the xy-plane having vertices (0, 0) , (2, 2) , and (2, 0) . A)  5 B)  20 C)  0 D)  10 E)  2 ) ) dy counterclockwise around the triangle in the xy-plane having vertices (0, 0) , (2, 2) , and (2, 0) .


A) 5
B) 20
C) 0
D) 10
E) 2

F) C) and D)
G) A) and B)

Correct Answer

verifed

verified

Let F be a smooth vector field in 3-space satisfying the condition  Let F be a smooth vector field in 3-space satisfying the condition   Find the flux of curl F upward through the part of the   lying above the xy-plane. A)  81  \pi  B)  72  \pi  C)  27  \pi  D)  18  \pi  E)  None of the above Find the flux of curl F upward through the part of the  Let F be a smooth vector field in 3-space satisfying the condition   Find the flux of curl F upward through the part of the   lying above the xy-plane. A)  81  \pi  B)  72  \pi  C)  27  \pi  D)  18  \pi  E)  None of the above lying above the xy-plane.


A) 81 π\pi
B) 72 π\pi
C) 27 π\pi
D) 18 π\pi
E) None of the above

F) B) and E)
G) C) and E)

Correct Answer

verifed

verified

A vector field F is called  solenoidal \textbf{ solenoidal } in a domain D if


A)  A vector field F is called  \textbf{      solenoidal    }  in a domain D if A)    F = 0 in D B)  curl(F)  = 0 in D C)  F =     in D for some scalar field   D)  div(F)  = 0 in D E)  grad(F)  = 0 in D F = 0 in D
B) curl(F) = 0 in D
C) F =  A vector field F is called  \textbf{      solenoidal    }  in a domain D if A)    F = 0 in D B)  curl(F)  = 0 in D C)  F =     in D for some scalar field   D)  div(F)  = 0 in D E)  grad(F)  = 0 in D  A vector field F is called  \textbf{      solenoidal    }  in a domain D if A)    F = 0 in D B)  curl(F)  = 0 in D C)  F =     in D for some scalar field   D)  div(F)  = 0 in D E)  grad(F)  = 0 in D in D for some scalar field 11ee7bad_3b7e_852d_ae82_0ffea7b87591_TB9661_11
D) div(F) = 0 in D
E) grad(F) = 0 in D

F) B) and D)
G) A) and E)

Correct Answer

verifed

verified

Showing 21 - 40 of 92

Related Exams

Show Answer