Filters
Question type

Find the vertex and directrix of the parabola. x214x8y+73=0x ^ { 2 } - 14 x - 8 y + 73 = 0


A) vertex: (7,3) ( 7,3 ) directrix: y=5y = 5
B) vertex: (7,3) ( - 7 , - 3 ) directrix: y=5y = 5
C) vertex: (7,3) ( 7,3 ) directrix: y=1y = 1
D) vertex: (7,3) ( - 7 , - 3 ) directrix: y=5y = - 5
E) vertex: (7,3) ( - 7 , - 3 ) directrix: y=9y = 9

F) A) and D)
G) C) and D)

Correct Answer

verifed

verified

Find the standard form of the equation of the parabola with the given characteristics. ​ Vertex: (0,2) ( 0,2 ) ;directrix: y=10y = 10


A) x2=32(y10) x ^ { 2 } = - 32 ( y - 10 )
B) y2=32(x2) y ^ { 2 } = - 32 ( x - 2 )
C) x2=32(y2) x ^ { 2 } = 32 ( y - 2 )
D) y2=32(x2) y ^ { 2 } = 32 ( x - 2 )
E) x2=32(y2) x ^ { 2 } = - 32 ( y - 2 )

F) C) and E)
G) B) and C)

Correct Answer

verifed

verified

Find the standard form of the equation of the parabola with the given characteristics. ​ Vertex: (5,5) ( - 5,5 ) ;focus: (5,0) ( - 5,0 )


A) (x5) 2=20(y5) ( x - 5 ) ^ { 2 } = 20 ( y - 5 )
B) (x5) 2=20(y5) ( x - 5 ) ^ { 2 } = - 20 ( y - 5 )
C) (y5) 2=20(x5) ( y - 5 ) ^ { 2 } = - 20 ( x - 5 )
D) (y5) 2=20(x5) ( y - 5 ) ^ { 2 } = 20 ( x - 5 )
E) (x+5) 2=20(y5) ( x + 5 ) ^ { 2 } = - 20 ( y - 5 )

F) B) and C)
G) A) and D)

Correct Answer

verifed

verified

Find the vertex and focus of the parabola for the given equation and select its graph.​ y=3x2y = - 3 x ^ { 2 }


A) Vertex: (0,0) Focus: (0,3)  Find the vertex and focus of the parabola for the given equation and select its graph.​  y = - 3 x ^ { 2 }  ​ A) Vertex: (0,0)  Focus: (0,3)    B) Vertex: (0,0)  Focus: (0,-12)    C) Vertex: (0,0)  Focus: (0,-3)    D) Vertex: (0,0)  Focus:  \left( 0 , - \frac { 1 } { 12 } \right)     E) Vertex: (0,0)  Focus:  \left( 0 , \frac { 1 } { 3 } \right)
B) Vertex: (0,0) Focus: (0,-12)  Find the vertex and focus of the parabola for the given equation and select its graph.​  y = - 3 x ^ { 2 }  ​ A) Vertex: (0,0)  Focus: (0,3)    B) Vertex: (0,0)  Focus: (0,-12)    C) Vertex: (0,0)  Focus: (0,-3)    D) Vertex: (0,0)  Focus:  \left( 0 , - \frac { 1 } { 12 } \right)     E) Vertex: (0,0)  Focus:  \left( 0 , \frac { 1 } { 3 } \right)
C) Vertex: (0,0) Focus: (0,-3)  Find the vertex and focus of the parabola for the given equation and select its graph.​  y = - 3 x ^ { 2 }  ​ A) Vertex: (0,0)  Focus: (0,3)    B) Vertex: (0,0)  Focus: (0,-12)    C) Vertex: (0,0)  Focus: (0,-3)    D) Vertex: (0,0)  Focus:  \left( 0 , - \frac { 1 } { 12 } \right)     E) Vertex: (0,0)  Focus:  \left( 0 , \frac { 1 } { 3 } \right)
D) Vertex: (0,0) Focus: (0,112) \left( 0 , - \frac { 1 } { 12 } \right)  Find the vertex and focus of the parabola for the given equation and select its graph.​  y = - 3 x ^ { 2 }  ​ A) Vertex: (0,0)  Focus: (0,3)    B) Vertex: (0,0)  Focus: (0,-12)    C) Vertex: (0,0)  Focus: (0,-3)    D) Vertex: (0,0)  Focus:  \left( 0 , - \frac { 1 } { 12 } \right)     E) Vertex: (0,0)  Focus:  \left( 0 , \frac { 1 } { 3 } \right)
E) Vertex: (0,0) Focus: (0,13) \left( 0 , \frac { 1 } { 3 } \right)  Find the vertex and focus of the parabola for the given equation and select its graph.​  y = - 3 x ^ { 2 }  ​ A) Vertex: (0,0)  Focus: (0,3)    B) Vertex: (0,0)  Focus: (0,-12)    C) Vertex: (0,0)  Focus: (0,-3)    D) Vertex: (0,0)  Focus:  \left( 0 , - \frac { 1 } { 12 } \right)     E) Vertex: (0,0)  Focus:  \left( 0 , \frac { 1 } { 3 } \right)

F) None of the above
G) A) and C)

Correct Answer

verifed

verified

Find the center and vertices which located on the major axis of the ellipse. x225+y29=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1


A) center: (0,0) vertices: (0,-5) , (0,5)
B) center: (0,0) vertices: (-3,0) , (3,0)
C) center: (5,3) vertices: (-5,-3) , (5,3)
D) center: (0,0) vertices: (-5,0) , (5,0)
E) center: (5,0) vertices: (0,-3) , (0,3)

F) B) and D)
G) None of the above

Correct Answer

verifed

verified

Identify the conic.​ 4y28x=04 y ^ { 2 } - 8 x = 0


A) Circle
B) Ellipse
C) Parabola
D) Hyperbola
E) Line

F) A) and C)
G) A) and B)

Correct Answer

verifed

verified

Find the standard form of the equation of the hyperbola with the given characteristics and center at the origin. ​ Vertices: (±3,0) ;passes through the point ​ (5,3) ( 5 , \sqrt { 3 } )


A) y29x227/16=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 27 / 16 } = - 1
B) x227/16+y29=1\frac { x ^ { 2 } } { 27 / 16 } + \frac { y ^ { 2 } } { 9 } = 1
C) x29y227/16=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 27 / 16 } = 1
D) x227/16+y29=1\frac { x ^ { 2 } } { 27 / 16 } + \frac { y ^ { 2 } } { 9 } = - 1
E) y29+x227/16=1\frac { y ^ { 2 } } { 9 } + \frac { x ^ { 2 } } { 27 / 16 } = 1

F) C) and D)
G) A) and B)

Correct Answer

verifed

verified

Give the standard form of the equation of the parabola with the given characteristics. vertex: (7,8) focus: (5,8)


A) (y+8) 2=8(x+7) ( y + 8 ) ^ { 2 } = - 8 ( x + 7 )
B) (y8) 2=8(x7) ( y - 8 ) ^ { 2 } = - 8 ( x - 7 )
C) (x+7) 2=8(y+8) ( x + 7 ) ^ { 2 } = 8 ( y + 8 )
D) (y8) 2=8(x7) ( y - 8 ) ^ { 2 } = 8 ( x - 7 )
E) (x7) 2=8(y8) ( x - 7 ) ^ { 2 } = 8 ( y - 8 )

F) All of the above
G) A) and D)

Correct Answer

verifed

verified

Find the vertex and focus of the parabola from the given equation and select its graph.​ 2x+y2=02 x + y ^ { 2 } = 0


A) Vertex: (0,0) Focus: (- 12\frac { 1 } { 2 } ,0)  Find the vertex and focus of the parabola from the given equation and select its graph.​  2 x + y ^ { 2 } = 0  ​ A) Vertex: (0,0)  Focus: (-  \frac { 1 } { 2 }  ,0)    B) Vertex: (-  \frac { 1 } { 2 }  ,0)  Focus: (0,0)    C) Vertex: (0,0)  Focus: (0,  \frac { 1 } { 2 }  )    D) Vertex: (0,0)  Focus: (0,-  \frac { 1 } { 2 }  )    E) Vertex: (0,0)  Focus: (  \frac { 1 } { 2 }  ,0)
B) Vertex: (- 12\frac { 1 } { 2 } ,0) Focus: (0,0)  Find the vertex and focus of the parabola from the given equation and select its graph.​  2 x + y ^ { 2 } = 0  ​ A) Vertex: (0,0)  Focus: (-  \frac { 1 } { 2 }  ,0)    B) Vertex: (-  \frac { 1 } { 2 }  ,0)  Focus: (0,0)    C) Vertex: (0,0)  Focus: (0,  \frac { 1 } { 2 }  )    D) Vertex: (0,0)  Focus: (0,-  \frac { 1 } { 2 }  )    E) Vertex: (0,0)  Focus: (  \frac { 1 } { 2 }  ,0)
C) Vertex: (0,0) Focus: (0, 12\frac { 1 } { 2 } )  Find the vertex and focus of the parabola from the given equation and select its graph.​  2 x + y ^ { 2 } = 0  ​ A) Vertex: (0,0)  Focus: (-  \frac { 1 } { 2 }  ,0)    B) Vertex: (-  \frac { 1 } { 2 }  ,0)  Focus: (0,0)    C) Vertex: (0,0)  Focus: (0,  \frac { 1 } { 2 }  )    D) Vertex: (0,0)  Focus: (0,-  \frac { 1 } { 2 }  )    E) Vertex: (0,0)  Focus: (  \frac { 1 } { 2 }  ,0)
D) Vertex: (0,0) Focus: (0,- 12\frac { 1 } { 2 } )  Find the vertex and focus of the parabola from the given equation and select its graph.​  2 x + y ^ { 2 } = 0  ​ A) Vertex: (0,0)  Focus: (-  \frac { 1 } { 2 }  ,0)    B) Vertex: (-  \frac { 1 } { 2 }  ,0)  Focus: (0,0)    C) Vertex: (0,0)  Focus: (0,  \frac { 1 } { 2 }  )    D) Vertex: (0,0)  Focus: (0,-  \frac { 1 } { 2 }  )    E) Vertex: (0,0)  Focus: (  \frac { 1 } { 2 }  ,0)
E) Vertex: (0,0) Focus: ( 12\frac { 1 } { 2 } ,0)  Find the vertex and focus of the parabola from the given equation and select its graph.​  2 x + y ^ { 2 } = 0  ​ A) Vertex: (0,0)  Focus: (-  \frac { 1 } { 2 }  ,0)    B) Vertex: (-  \frac { 1 } { 2 }  ,0)  Focus: (0,0)    C) Vertex: (0,0)  Focus: (0,  \frac { 1 } { 2 }  )    D) Vertex: (0,0)  Focus: (0,-  \frac { 1 } { 2 }  )    E) Vertex: (0,0)  Focus: (  \frac { 1 } { 2 }  ,0)

F) C) and D)
G) A) and B)

Correct Answer

verifed

verified

As a speeding train crosses a trestle over a deep gorge,a child drops his toy plane from the window.The path of the toy plane is modeled by x2=7.0(y185) x ^ { 2 } = - 7.0 ( y - 185 ) ,where y is the height above the floor of the gorge and distances are measured in feet.How far will the toy plane travel horizontally before it hits the bottom of the gorge? [Note: The toy plane does not glide;it "drops like a rock."]


A) 7.0 ft
B) 36.0 ft
C) 185 ft
D) 1295.0 ft
E) 14 ft

F) A) and C)
G) B) and C)

Correct Answer

verifed

verified

Write an equation for a cross section of the parabolic ear (used to hear sounds from a distance) shown in the picture.  Write an equation for a cross section of the parabolic ear (used to hear sounds from a distance) shown in the picture.   ​ d = 2.25 inches A)   x ^ { 2 } = 9 y  B) ​  y ^ { 2 } = \frac { 1 } { 9 } x  C) ​  x ^ { 2 } = 2.25 y  D) ​  y ^ { 2 } = 2.25 x  E)   y ^ { 2 } = 9 x ​ d = 2.25 inches


A) x2=9yx ^ { 2 } = 9 y
B) ​ y2=19xy ^ { 2 } = \frac { 1 } { 9 } x
C) ​ x2=2.25yx ^ { 2 } = 2.25 y
D) ​ y2=2.25xy ^ { 2 } = 2.25 x
E) y2=9xy ^ { 2 } = 9 x

F) B) and C)
G) C) and E)

Correct Answer

verifed

verified

Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. focus: (0,-2)


A) y2 = -8x
B) x2 = -8y
C) x2 = -2y
D) y2 = -2x
E) x2 = 2y

F) B) and E)
G) A) and C)

Correct Answer

verifed

verified

Find the vertex and focus of the parabola. x2+8y=0x ^ { 2 } + 8 y = 0


A) vertex: (0,0) focus: (0,-2)
B) vertex: (2,0) focus: (0,0)
C) vertex: (0,0) focus: (-2,0)
D) vertex: (0,0) focus: (0,2)
E) vertex: (-2,0) focus: (0,0)

F) A) and E)
G) B) and C)

Correct Answer

verifed

verified

Find the standard form of the equation of the ellipse with the given characteristics and center at the origin. ​ Vertices: (0,±7) ;focies: (0,±4) ​


A) x249+y233=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 33 } = 1
B) x233+y249=1\frac { x ^ { 2 } } { 33 } + \frac { y ^ { 2 } } { 49 } = 1
C) x249+y233=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 33 } = - 1
D) x249+y233=1- \frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 33 } = 1
E) x233+y249=1\frac { x ^ { 2 } } { 33 } + \frac { y ^ { 2 } } { 49 } = - 1

F) A) and D)
G) A) and B)

Correct Answer

verifed

verified

Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. directrix: x = -9


A) x2 = -9y
B) y2 = 36x
C) x2 = -36y
D) x2 = 36y
E) y2 = -9x

F) B) and C)
G) C) and D)

Correct Answer

verifed

verified

Find the vertices and asymptotes of the hyperbola. 25y24x2=10025 y ^ { 2 } - 4 x ^ { 2 } = 100


A) vertices: (±2,0) ,asymptote: y=±52xy = \pm \frac { 5 } { 2 } x
B) vertices: (0,±2) ,asymptote: y=±25xy = \pm \frac { 2 } { 5 } x
C) vertices: (±2,0) ,asymptote: y=±25xy = \pm \frac { 2 } { 5 } x
D) vertices: (0,±2) ,asymptote: y=±52xy = \pm \frac { 5 } { 2 } x
E) vertices: (±2,5) ,asymptote: y=±25xy = \pm \frac { 2 } { 5 } x

F) A) and E)
G) All of the above

Correct Answer

verifed

verified

Find the vertex,focus,and directrix of the parabola.​ y2=3xy ^ { 2 } = - 3 x


A) Vertex: (0,0) ;Focus: (34,0) \left( - \frac { 3 } { 4 } , 0 \right) ;Directrix: x=34x = - \frac { 3 } { 4 }
B) Vertex: (0,0) ;Focus: (13,0) \left( - \frac { 1 } { 3 } , 0 \right) ;Directrix: x=13x = \frac { 1 } { 3 }
C) Vertex: (0,0) ;Focus: (13,0) \left( \frac { 1 } { 3 } , 0 \right) ;Directrix: x=13x = \frac { 1 } { 3 }
D) Vertex: (0,0) ;Focus: (34,0) \left( \frac { 3 } { 4 } , 0 \right) ;Directrix: x=34x = - \frac { 3 } { 4 }
E) Vertex: (0,0) ;Focus: (34,0) \left( - \frac { 3 } { 4 } , 0 \right) ;Directrix: x=34x = \frac { 3 } { 4 }

F) B) and D)
G) A) and D)

Correct Answer

verifed

verified

Find the vertex and focus of the parabola from the given equation and select its graph.​ y2=6xy ^ { 2 } = 6 x


A) Vertex: (0,0) Focus: (- 32\frac { 3 } { 2 } ,0)  Find the vertex and focus of the parabola from the given equation and select its graph.​  y ^ { 2 } = 6 x  ​ A) Vertex: (0,0)  Focus: (-  \frac { 3 } { 2 }  ,0)    B) Vertex: (0,0)  Focus: (0,-  \frac { 3 } { 2 }  )    C) Vertex: (0,0)  Focus: (  \frac { 3 } { 2 }  ,0)    D) Vertex: (0,0)  Focus: (0,  \frac { 3 } { 2 }  )    E) Vertex: (0,0)  Focus: (  \frac { 3 } { 2 }  ,0)
B) Vertex: (0,0) Focus: (0,- 32\frac { 3 } { 2 } )  Find the vertex and focus of the parabola from the given equation and select its graph.​  y ^ { 2 } = 6 x  ​ A) Vertex: (0,0)  Focus: (-  \frac { 3 } { 2 }  ,0)    B) Vertex: (0,0)  Focus: (0,-  \frac { 3 } { 2 }  )    C) Vertex: (0,0)  Focus: (  \frac { 3 } { 2 }  ,0)    D) Vertex: (0,0)  Focus: (0,  \frac { 3 } { 2 }  )    E) Vertex: (0,0)  Focus: (  \frac { 3 } { 2 }  ,0)
C) Vertex: (0,0) Focus: ( 32\frac { 3 } { 2 } ,0)  Find the vertex and focus of the parabola from the given equation and select its graph.​  y ^ { 2 } = 6 x  ​ A) Vertex: (0,0)  Focus: (-  \frac { 3 } { 2 }  ,0)    B) Vertex: (0,0)  Focus: (0,-  \frac { 3 } { 2 }  )    C) Vertex: (0,0)  Focus: (  \frac { 3 } { 2 }  ,0)    D) Vertex: (0,0)  Focus: (0,  \frac { 3 } { 2 }  )    E) Vertex: (0,0)  Focus: (  \frac { 3 } { 2 }  ,0)
D) Vertex: (0,0) Focus: (0, 32\frac { 3 } { 2 } )  Find the vertex and focus of the parabola from the given equation and select its graph.​  y ^ { 2 } = 6 x  ​ A) Vertex: (0,0)  Focus: (-  \frac { 3 } { 2 }  ,0)    B) Vertex: (0,0)  Focus: (0,-  \frac { 3 } { 2 }  )    C) Vertex: (0,0)  Focus: (  \frac { 3 } { 2 }  ,0)    D) Vertex: (0,0)  Focus: (0,  \frac { 3 } { 2 }  )    E) Vertex: (0,0)  Focus: (  \frac { 3 } { 2 }  ,0)
E) Vertex: (0,0) Focus: ( 32\frac { 3 } { 2 } ,0)  Find the vertex and focus of the parabola from the given equation and select its graph.​  y ^ { 2 } = 6 x  ​ A) Vertex: (0,0)  Focus: (-  \frac { 3 } { 2 }  ,0)    B) Vertex: (0,0)  Focus: (0,-  \frac { 3 } { 2 }  )    C) Vertex: (0,0)  Focus: (  \frac { 3 } { 2 }  ,0)    D) Vertex: (0,0)  Focus: (0,  \frac { 3 } { 2 }  )    E) Vertex: (0,0)  Focus: (  \frac { 3 } { 2 }  ,0)

F) B) and C)
G) B) and D)

Correct Answer

verifed

verified

Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. ​ Directrix: y=3y = 3


A) y2=12xy ^ { 2 } = - 12 x
B) y2=xy ^ { 2 } = x
C) y2=12xy ^ { 2 } = 12 x
D) x2=12yx ^ { 2 } = 12 y
E) x2=12yx ^ { 2 } = - 12 y

F) A) and D)
G) B) and E)

Correct Answer

verifed

verified

Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. directrix: x = 5


A) x2 = -20y
B) x2 = 20y
C) x2 = 5y
D) y2 = 5x
E) y2 = -20x

F) A) and B)
G) B) and E)

Correct Answer

verifed

verified

Showing 101 - 120 of 124

Related Exams

Show Answer